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Abstract. We discuss a self-avoiding walk model of the adsorption of a copolymer at a plane
surface, where the copolymer contains two types of monomers. We concentrate on the case
where one type of monomer (A) has a short-range interaction with the surface and the other (B)
has no interaction with the surface. We show that the sequence distribution of the comonomers
affects the location of the adsorption transition and that for some sequence distributions the
adsorption transition occurs at the same place as for the homopolymer poly-A. Moreover, in
some circumstances the crossover exponent is identical to that of poly-A.

1. Introduction

Self-avoiding walks on the simple cubic latticeZ3, starting at the origin and confined to
the half-spacez > 0, are a useful model of polymer adsorption at a surface (De’Bell and
Lookman 1993). If we include an attractive interaction with the surface (for each vertex of
the walk in the planez = 0) then Hammersleyet al (1982) showed that the model has a
phase transition corresponding to polymer adsorption. This transition has been studied by
many different approaches and De’Bell and Lookman (1993) have given an excellent review
of this field. The extension to the adsorption of nonlinear polymers has been investigated
by Whittington and Soteros (1991) and Soteros (1992).

The aim of this paper is to present some rigorous results on a lattice model of copolymer
adsorption and, to set the scene, we shall first briefly recall some results on adsorption of
homopolymers. Ann-edgeself-avoiding walkon the simple cubic latticeZ3 is a sequence
of n + 1 distinct vertices inZ3 labelled i = 0, 1, 2, . . . , n with verticesi and i + 1 unit
distance apart. We add an edge between each such pair of adjacent vertices so that a walk
with n+ 1 vertices hasn edges. We write(xi, yi, zi) for the coordinates of theith vertex.
If the walks start at the origin we writecn for the number of distinctn-edge self-avoiding
walks, so thatc1 = 6, c2 = 30, etc. Theconnective constant(Hammersley 1957) of the
latticeZ3 is

κ3 = lim
n→∞ n

−1 logcn. (1.1)

A self-avoiding walk is apositive walk if the walk starts at the origin andzi > 0 for
all values of i. We write c+n for the number ofn-edge positive walks and it is known
(Whittington 1975) that

lim
n→∞ n

−1 logc+n = κ3. (1.2)
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Let c+n (v) be the number ofn-edge positive walks withv+1 vertices in the planez = 0.
We say that such a walkvisits the surfacev + 1 times and hasv + 1 visits. Define the
partition function

Z+n (α) =
∑
v

c+n (v) eαv. (1.3)

Hammersleyet al (1982) have established the existence of the limit

lim
n→∞ n

−1 logZ+n (α) = κ+(α) (1.4)

for all α <∞ and showed thatκ+(α) is continuous, convex and non-decreasing. Moreover,

κ+(α) = κ3 (1.5)

for all α 6 0 and

max[κ3, κ2+ α] 6 κ+(α) 6 κ3+ α (1.6)

for α > 0, whereκ2 is the connective constant of the square lattice,Z2. This implies the
existence of a singular pointα0, where 06 α0 6 κ3 − κ2, corresponding to the adsorption
transition. (In fact, the inequalities are known to be strict.) The mean fraction of vertices
in the surface, limn→∞〈v〉/n, is zero forα 6 α0 and non-zero forα > α0, and

lim
α→∞ lim

n→∞〈v〉/n = 1. (1.7)

Although there are a number of recent papers on the theory of copolymer adsorption
(Sommer and Daoud 1995, Sommeret al 1996) and some Monte Carlo results (Wanget al
1993), we know of no corresponding rigorous results for copolymer adsorption. In the next
section we describe a self-avoiding walk model of copolymer adsorption, and report results
for the special cases of block copolymers in section 3 and strictly alternating copolymers
in section 4.

2. Copolymer adsorption

The idea of the model is to consider self-avoiding walks whose vertices are colouredA or
B. The colouring (i.e. the sequence ofA’s andB ’s) is fixed throughout the calculation, so
that the system is ‘quenched’.A andB vertices have different interactions with the surface
z = 0. Considern-edge self-avoiding walks with vertices labelledi = 1, 2, . . . , n. Each
walk has one vertex (say thekth) at the origin, and no vertex has negativez-coordinate.
(If k = 0 the walk is a positive walk.) Each vertex of the walk is colouredA or B and,
once this colouring is chosen, it is fixed. If theith vertex is colouredA we say that it is an
A-vertex and setχi = 1. If the ith vertex is colouredB we say that it is aB-vertex and
setχi = 0. For convenience we shall takeχk = 1 if the kth vertex is fixed at the origin.

Let c+n (vA, vB |χ) be the number of such walks withn edges,vA+1 A-vertices inz = 0
(or vA + 1 A-visits) andvB B-vertices inz = 0 (or vB B-visits). We append the symbolχ
to label the sequence of comonomers and the particular vertex which is fixed at the origin.
Define the partition function

Z+n (αA, αB |χ) =
∑
vA,vB

c+n (vA, vB |χ) eαAvA+αBvB . (2.1)

In general, we are interested in the existence of the limit

κ+(αA, αB |χ) = lim
n→∞ n

−1 logZ+n (αA, αB |χ) (2.2)

and in the singularities ofκ+(αA, αB |χ) in the (αA, αB)-plane. However, in this paper we
shall confine our attention to the caseαA = α andαB = 0. In the next two sections we
investigate two interesting special cases.
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3. Adsorption of block copolymers

In this section we investigate the case of a block copolymer where the sequence of
comonomers is a set of two or more long blocks. The essential thing is that the block
lengths increase linearly with the total degree of polymerization.

We need some definitions and two preliminary lemmas. We define aloop to be a
positive walk which satisfies the following conditions:

0= x0 6 xi < xn ∀i < n (3.1)

and

0= z0 = zn 6 zi ∀i. (3.2)

The first condition says that the walk should be unfolded in thex-direction, while the second
condition says that the two vertices of unit degree should be in the planez = 0. The point
is that loops are easier to work with than walks. The first lemma says that we do not lose
much by working with loops. Letln(v) be the number of loops withn edges havingv + 1
visits, and define the corresponding partition function

Ln(α) =
∑
v

ln(v) eαv. (3.3)

Lemma 1 (Hammersley et al 1982).The limit

κL(α) = lim
n→∞ n

−1 logLn(α) (3.4)

exists for all finite values ofα andκL(α) = κ+(α).
The second lemma connects walks interacting with a surface and positive walks

interacting with a surface. Letcin(v) be the number ofn-edge self-avoiding walks with
no vertex having negativez-coordinate,v + 1 visits and theith vertex inz = 0. Let c∗n(v)
be the number of walks withn edges, no vertices with negativez-coordinate,v + 1 visits
andv > 0 (so that at least one vertex must be in the planez = 0). Define the corresponding
partition functions

Zin(α) =
∑
v

cin(v) eαv (3.5)

and

Z∗n(α) =
∑
v

c∗n(v) eαv. (3.6)

Lemma 2.The limiting free energies

κi(α) = lim
n→∞ n

−1 logZin(α) (3.7)

and

κ∗(α) = lim
n→∞ n

−1 logZ∗n(α) (3.8)

exist and are equal toκ+(α) for all i 6 n and for all finite values ofα.
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Proof. We obtain an upper bound onZin(α) by considering two independent positive walks,
one of lengthi and the other of lengthn− i, both having their zeroth vertex at the origin.
This gives the inequality

cin(v) 6
∑
w

c+i (w) c
+
n−i (v − w) (3.9)

where the sum overw comes from the total number of visits being distributed over the two
independent positive walks. Then, by the convolution theorem,

Zin(α) 6 Z+i (α) Z+n−i (α) (3.10)

and

lim sup
n→∞

n−1 logZin(α) 6 κ+(α) (3.11)

both wheni is fixed (or i = o(n)) asn goes to infinity, and wheni = γ n for some fixed
0 < γ 6 1. To obtain a lower bound we consider the subset of these walks which are a
concatenation of two loops, one of lengthi and the other of lengthn− i. We then have

cin(v) >
∑
w

li(w) ln−i (v − w) (3.12)

for v > 4. If v < 4 we simply takecin(v) > 0. Multiplying by eαv and summing overv
gives

Zin(α) > Li(α)Ln−i (α) (3.13)

so that, using lemma 1, we obtain

lim inf
n→∞ n−1 logZin(α) > κ+(α). (3.14)

The first part of the lemma follows from (3.11) and (3.14). The second part then follows
from the inequalities

c+n (v) 6 c∗n(v) 6 (n+ 1)max
i
cin(v) (3.15)

thus completing the proof. �

Suppose we have a polymer withb blocks, the first havingn1 A-vertices, the second
havingn2 B-vertices, and so on, so that

∑
i6b ni = n+ 1, the total number ofA-vertices is

n1+ n3+ · · · and the total number ofB-vertices isn2+ n4+ · · · . Suppose that the zeroth
vertex is in the planez = 0. Let a = (n1 + n3 + · · ·)/(n + 1). As a shorthand we shall
write χ = bl wherebl is intended to label the general block copolymer described above.

Theorem 1.The limiting free energy limn→∞ n−1 logZ+n (α, 0|bl) exists and is equal to
aκ+(α)+ (1− a)κ3.

Proof. To obtain an upper bound onZ+n (α, 0|bl) we consider each block to be embedded
independently inZ3 but connected to the previous block by an edge (whose direction can
be chosen in at most five ways). The first block is a positive walk, the second can be
embedded in at mostcn2−1 ways, with a similar expression for allB-blocks. EachA-block
can either have no vertices inz = 0, in which case it can be embedded in at mostcnj−1

ways, or it can have at least one vertex inz = 0, in which case it can be embedded in at
mostc∗nj−1(vj ) ways for somevj > 0. This gives the inequality

Z+n (α, 0|bl) 6 5bZ+n1−1(α)
∏
p>1

cn2p−1

∏
p>1

2 max[cn2p+1−1, Z
∗
n2p+1−1(α)]. (3.16)
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Writing ni = γin, taking logarithms, dividing byn and lettingn go to infinity with γi fixed,
gives

lim sup
n→∞

n−1 logZ+n (α, 0|bl) 6 aκ+(α)+ (1− a)κ3 (3.17)

where we have made use of lemma 2. To obtain a lower bound we consider the subset
of the walks where each block is separately a loop, and where the loops are connected by
additional edges in the surfacez = 0. Since the loops can be embedded independently we
obtain the inequality

Z+n (α, 0|bl) >
∏
p>1

Ln2p−1−1(α) Ln2p−1(0). (3.18)

Again, settingni = γin, taking logarithms, dividing byn and lettingn go to infinity with
γi fixed, we obtain

lim inf
n→∞ n−1 logZ+n (α, 0|bl) > aκ+(α)+ (1− a)κ3. (3.19)

The theorem follows from (3.17) and (3.19). �

This theorem implies that the free energy of this type of block copolymer (witha > 0)
has a singular point at the same location as that of a homopolymer ofA monomers, since
the free energy is singular whenκ+(α) is singular; that is, the homopolymer and the block
copolymer will adsorb at the same temperature. In the adsorbed phase, the fraction of
monomers in the surface (for the block copolymer) will increase to an asymptotic value of
limn→∞〈vA〉/n = a, so that the loops ofB units are expected to extend far into the bulk
phase. (The Monte Carlo results of Wanget al (1993) also suggest this behaviour.) Since
the shape of the free energy near the transition is controlled by the behaviour ofκ+(α) near
the singular point, the crossover exponentφ will also be the same as for the homopolymer.

4. Adsorption of an alternating copolymer

In this section we examine a second special case, that of a strictly alternating copolymer.
The model we use is a self-avoiding walk, starting at the origin and having no vertices with
z 6 0, and with the vertices coloured alternatelyA andB. We choosen to be odd so that
there are equal numbers ofA- andB-vertices.

Let c+n (vA, vB |alt) be the number ofn-edge positive walks with an alternating sequence
of A- andB-vertices which havevA+1 A-visits andvB B-visits. Define the corresponding
partition function

Z+n (αA, αB |alt) =
∑
nA,nB

c+n (vA, vB |alt)eαAvA+αBvB . (4.1)

Lemma 3.The limiting free energy

κ+(αA, αB |alt) = lim
n→∞ n

−1 logZ+n (αA, αB |alt) (4.2)

exists for all finite values ofαA andαB and is a convex, continuous function ofαA andαB .

Proof. The proof is a straightforward application of the methods of Hammersleyet al
(1982). One can show, using a concatenation argument, that the corresponding free energy
for loops (with an alternating sequence) exists, and then that loops and walks have the same
free energy. We omit the details. �
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Lemma 4.The limiting free energyκ+(α, 0|alt) is equal toκ3 for α 6 0 and satisfies the
following bounds forα > 0:

max[κ3, κ2+ α/2] 6 κ+(α, 0|alt) 6 κ3+ α/2. (4.3)

Proof. The proof is essentially the same as that given for the case of a homopolymer by
Whittington (1975). The only difference comes from noticing that when the walk is entirely
in the planez = 0 the number ofA-vertices is(n+ 1)/2. Again we omit further details.�

Lemma 4 establishes that there is an adsorption transition (atαa0, say) for an alternating
copolymer, with 06 αa0 6 2(κ3 − κ2). In the next theorem we establish some improved
bounds on its location.

Theorem 2.If we write αa0 for the location of the adsorption transition for a strictly
alternating copolymer then

3α0/26 αa0 6 3α0. (4.4)

Proof. We call a sequence of vertices inz = 0 an incursion. If the incursion has an even
number of vertices then the number ofA-visits and the number ofB-visits in the incursion
must be the same. If the number of vertices in the incursion is odd and not equal to one,
the number ofA-visits (v0

A) and the number ofB-visits (v0
B) in the incursion are related by

the inequalities

v0
A/26 v0

B 6 2v0
A. (4.5)

If the incursion has a single vertex it must be a vertex of degree one, and can be either
anA-vertex or aB-vertex. By considering all possible combinations of incursions we then
have the inequalities

1
2vA 6 vB 6 2vA + 2. (4.6)

The partition function for a homopolymer can be written as

Z+n (α) =
∑
vA,vB

c+n (vA, vB |alt)eα(vA+vB) (4.7)

where theA- andB-vertices in the copolymer are treated as being identical. Using this
expression and (4.6) we have, forα > 0,

Z+n (α) >
∑
vA,vB

c+n (vA, vB |alt)eαvA+αvA/2

=
∑
vA,vB

c+n (vA, vB |alt)e3αvA/2

= Z+n (3α/2, 0)|alt) (4.8)

and, hence,

κ+(α) > κ+(3α/2, 0|alt). (4.9)

If α 6 α0 then κ+(α) = κ3 so, by (4.9),κ+(3α/2, 0|alt) = κ3. Thereforeαa0 > 3α0/2.
Similarly, using the opposite inequality in (4.6) we have

Z+n (α) 6 e2α
∑
vA,vB

c+n (vA, vB |alt)e3αvA = e2αZ+n (3α, 0|alt). (4.10)

If α > α0 thenκ+(α) > κ3 so κ+(3α, 0|alt) > κ3, and henceαa0 6 3α0. �
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This theorem establishes that a strictly alternating copolymer does not adsorb at the same
temperature as a homopolymer and therefore (by theorem 1) does not adsorb at the same
temperature as a block copolymer, even if the block copolymer contains equal amounts of
the two comonomers.

Regular copolymers with the structureABpABp . . . whereBp means a block ofp B-
vertices, can be analysed using a similar argument. For each case wherep > 1 we find that
the location (αp0 ) of the transition satisfies the inequalityαp0 > 2α0.

5. Discussion

We have described a simple self-avoiding walk model of the adsorption of a copolymer and
have shown that, if one comonomer (A) is attracted to the surface and the other (B) does not
interact with the surface, then the location of the adsorption transition for block copolymers
with long blocks is the same as for the homopolymer poly-A. In contrast, strictly alternating
copolymers have an adsorption transition but not at the same place as the homopolymer.

Apart from the intrinsic interest of copolymer adsorption, these results are interesting
because of the current interest in phase transitions in quenched random systems. The theta
transition in quenched random polymers has been the subject of considerable recent work
(see, for instance, Kantor and Kardar 1994, Grassberger and Hegger 1995) and one can
think of copolymer adsorption as a simpler analogue of this problem.
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